Возведение в степень: правила, примеры. Как возвести в дробь целое число


Дробная степень | Алгебра

Какими свойствами обладает степень с дробным показателем (дробная степень)? Как выполнить возведение числа в дробную степень?

Определение.

1) Степенью числа a (a>0) с рациональным показателем r

    \[r = \frac{m}{n},\]

где m — целое число, n — натуральное число (n>1), называется число

    \[{a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\]

2) При a=0 и r>0 

    \[{0^r} = 0.\]

В частности,

    \[{a^{\frac{1}{2}}} = \sqrt a \]

При a<0 степень с дробным показателем не определяется.

Все свойства степеней из курса алгебры 7 класса выполняются и для степеней с рациональными показателями.

Для упрощения вычислений при возведении числа в дробную степень удобно использовать таблицу степеней и следующее свойство корня:

    \[\sqrt[n]{{{a^m}}} = {(\sqrt[n]{a})^m}\]

Примеры.

Выполнить возведение в дробную степень:

    \[1){81^{\frac{1}{4}}} = \sqrt[4]{{81}} = 3;\]

    \[2){128^{\frac{5}{7}}} = \sqrt[7]{{{{128}^5}}} = {(\sqrt[7]{{128}})^5} = {2^5} = 32;\]

Если показатель степени — десятичная дробь, нужно предварительно перевести ее в обыкновенную.

    \[3){625^{0,75}} = {625^{\frac{3}{4}}} = \sqrt[4]{{{{625}^3}}} = {(\sqrt[4]{{625}})^3} = \]

    \[ = {5^3} = 125;\]

    \[4){243^{0,4}} = {243^{\frac{2}{5}}} = \sqrt[5]{{{{243}^2}}} = {\left( {\sqrt[5]{{243}}} \right)^2} = \]

    \[ = {3^2} = 9.\]

Смешанное число нужно предварительно перевести в неправильную дробь:

    \[5){(15\frac{5}{8})^{\frac{2}{3}}} = {(\frac{{125}}{8})^{\frac{2}{3}}} = \sqrt[3]{{{{(\frac{{125}}{8})}^2}}} = {(\sqrt[3]{{\frac{{125}}{8}}})^2} = \]

    \[ = {(\frac{5}{2})^2} = \frac{{25}}{4} = 6\frac{1}{4};\]

    \[6){(12\frac{1}{4})^{1,5}} = {(\frac{{49}}{4})^{\frac{3}{2}}} = \sqrt {{{(\frac{{49}}{4})}^3}} = {(\sqrt {\frac{{49}}{4}} )^3} = \]

    \[ = {(\frac{7}{2})^3} = \frac{{343}}{8} = 42\frac{7}{8}.\]

www.algebraclass.ru

Возведение в степень: правила, примеры, дробная степень

Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.

Понятие возведения в степень

Начнем с формулирования базовых определений.

Определение 1

Возведение в степень - это вычисление значения степени некоторого числа.

То есть слова "вычисление значение степени" и "возведение в степень" означают одно и то же. Так, если в задаче стоит "Возведите число 0,5 в пятую степень", это следует понимать как "вычислите значение степени (0,5)5.

Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.

Как возвести число в натуральную степень

Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n-ного числа множителей, каждый из которых равен a. Это можно записать так:

Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.

Пример 1

Условие: возведите -2 в степень 4.

Решение

Используя определение выше, запишем: (−2)4=(−2)·(−2)·(−2)·(−2). Далее нам нужно просто выполнить указанные действия и получить 16.

Возьмем пример посложнее.

Пример 2

Вычислите значение 3272

Решение

Данную запись можно переписать в виде

www.zaochnik.com

Как перевести целое число в дробь: урок математики

#1

Пытаясь решить математические задачи с дробями, школьник понимает, что ему недостаточно одного только желания решить эти задачи. Также необходимы и знания по вычислениям с дробными числами. В некоторых задачах все начальные данные подаются в условии в дробном виде. В других же часть их может быть дробями, а часть - целыми числами. Чтобы производить какие-то вычисления с этими заданными значениями, надо сначала привести их к единому виду, то есть целые числа перевести в дробные, а потом уже заниматься вычислениями. Вообще способ, как целое число перевести в дробь, очень прост. Для этого надо в числителе итоговой дроби написать само заданное число, а в ее знаменателе - единичку. То есть если надо перевести в дробь число 12, то полученная дробь будет 12/1.

#2

Такие модификации помогают приводить дроби к общему знаменателю. Это нужно для того, чтобы получить возможность проводить вычитание или сложение дробных чисел. При их умножении и делении общий знаменатель не требуется. Можно рассмотреть на примере, как перевести число в дробь и потом произвести сложение двух дробных чисел. Допустим надо сложить число 12 и дробное число 3/4. Первое слагаемое (число 12) приводится к виду 12/1. Однако его знаменатель равен 1 в то время, как у второго слагаемого он равен 4. Для последующего сложения этих двух дробей надо привести их к общему знаменателю. Благодаря тому, что у одного из чисел знаменатель равен 1, это сделать вообще просто. Надо взять знаменатель второго числа и умножить на него и числитель, и знаменатель первого.

#3

В результате умножения получится: 12/1=48/4. Если 48 разделить на 4, то получается 12, значит дробь приведена к правильному знаменателю. Таким образом можно заодно и понять, как дробь перевести в целое число. Это касается только неправильных дробей, потому что у них числитель больше, чем знаменатель. В таком случае числитель делится на знаменатель и, если не получается остатка, будет целое число. С остатком же дробь так и остается дробью, но с выделенной целой частью. Теперь относительно приведения к общему знаменателю на рассмотренном примере. Если бы у первого слагаемого знаменатель был бы равен какому-нибудь другому числу, кроме 1, числитель и знаменатель первого числа надо бы было умножить на знаменатель второго, а числитель и знаменатель второго - на знаменатель первого.

#4

Оба слагаемых приведены к их общему знаменателю и готовы к сложению. Получается, что в данной задаче нужно сложить два числа: 48/4 и 3/4. При сложении двух дробей с одинаковым знаменателем суммировать нужно только их верхние части, то есть числители. Знаменатель суммы останется без изменения. В этом примере должно получиться 48/4+3/4=(48+3) /4=51/4. Это и будет результат сложения. Но в математике принято неправильные дроби приводить к правильным. Выше рассматривалось, как превратить дробь в число, но в этом примере не получится целое число из дроби 51/4, так как число 51 не делится без остатка на число 4. Поэтому нужно выделить целую часть данной дроби и ее дробную часть. Целой частью будет то число, которое получается при делении нацело первого же меньшего, чем 51, числа.

#5

То есть то, которое можно разделить на 4 без остатка. Первое число перед числом 51, которое нацело делится на 4, будет число 48. Разделив 48 на 4, получается число 12. Значит целой частью искомой дроби будет 12. Осталось только найти дробную часть числа. Знаменатель дробной части остается тем же, то есть 4 в данном случае. Чтобы найти числитель дробной части, надо от исходного числителя вычесть то число, которое делилось на знаменатель без остатка. В рассматриваемом примере требуется для этого вычесть из числа 51 число 48. То есть числитель дробной части равен 3. Результатом сложения будет 12 целых и 3/4. То же самое делается и при вычитании дробей. Допустим надо из целого числа 12 вычесть дробное число 3/4. Для этого целое число 12 переводится в дробное 12/1, а затем приводится к общему знаменателю со вторым числом - 48/4.

#6

При вычитании точно так же знаменатель обеих дробей остается без изменения, а с их числителями и проводят вычитание. То есть от числителя первой дроби вычитают числитель второй. В данном примере это будет 48/4-3/4=(48-3) /4=45/4. И опять получилась неправильная дробь, которую надо привести к правильной. Для выделения целой части определяют первое до 45 число, которое делится на 4 без остатка. Это будет 44. Если число 44 разделить на 4, получится 11. Значит целая часть итоговой дроби равна 11. В дробной части также знаменатель оставляют без изменения а из числителя исходной неправильной дроби вычитают то число, которое делилось на знаменатель без остатка. То есть надо из 45 вычесть 44. Значит числитель в дробной части равен 1 и 12-3/4=11 и 1/4.

#7

Если дано одно число целое и одно дробное, но его знаменатель равен 10, то проще второе число перевести в десятичную дробь, а потом производить вычисления. Например надо сложить целое число 12 и дробное число 3/10. Если число 3/10 записать в виде десятичной дроби, получится 0,3. Теперь значительно легче к 12 прибавить 0,3 и получить 2,3, чем приводить дроби к общему знаменателю, производить вычисления, а затем выделять целую и дробную части из неправильной дроби. Даже самые простые задачки с дробными числами предполагают, что школьник (или студент) знает, как перевести целое число в дробь. Эти правила слишком просты и легко запоминаются. Зато с помощью них очень просто проводить вычисления дробных чисел.

uznay-kak.ru

Сложение дробей | Онлайн калькулятор

Сложение дробей с одинаковыми знаменателями:

Определение: Суммой дробей с одинаковыми знаменателями называют дробь,числитель которой равен сумме числителей исходных дробей,и со знаменателем равным знаменателю обеих дробей.

Формула Сложим две дроби с одинаковым с одинаковыми знаменателями По формуле складываем числители, а знаменатель оставляем исходный

Важно: Если есть возможность сократить дробь, то в конечный ответ мы записываем сокращенную дробь.

Пример: При сокращении дроби у нас получится число 1/2

Сложение дробей с разными знаменателями:

Определение: Для того, чтобы найти сумму дробей с разными знаменателями сначала нужно дроби привести к общему знаменателю, а затем сложить их как дроби с одинаковыми знаменателями. Задача:

Ход решения: 1) Приводим дроби к общему знаменателю.Для этого ищем НОК - наименьшее общее кратное, для знаменателей 7 и 6 это число 42.Делим число 42 на знаменатели дробей 3/7 и 2/6Так мы нашли дополнительные множители.Дальше домножаем дроби на дополнительные множители и получаем выражение:

2) Складываем дроби.В нашем случае дробь можно сократить на 2 , и в конечный ответ записываем число 16/21

Сложение дроби и целого числа:

Определение: Для того, чтобы сложить дробь с целым числом, нужно сначала представить целое число как дробь со знаменателем равным 1.

Алгоритм расчета:1) Приводим дроби к общему знаменателю.2) Складываем дроби 3) Если есть возможность, то сокращаем полученную дробь.4) Если же получилась неправильная дробь, то вычисляем из нее целую часть.Пример: Решение: Вычисляем целую часть, и получаем ответ

Сложение смешанных дробей:

Определение: Для того, чтобы сложить смешанные дроби нужно отдельно сложить целые части, и отдельно сложить дробные части.Формула Пример: Подставляем цифры в формулу: Получаем:

Из дроби вычисляем целую часть т.к она неправильная,и получаем выражение 7+2=9.

Сложение дробей с помощью онлайн калькулятора:

Вам помог этот калькулятор? Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.

НЕТ

Смотрите также

allcalc.ru

Калькулятор дробей онлайн

Инструкция калькулятора дробей онлайн

С помощью калькулятора дробей вы можете сложить дроби, вычитать дроби, умножить дроби, делить дроби, возвести дроби в целую или дробную степень, преобразовать обыкновенную дробь в смешанное число (дробь с целой частью) и обратно, преобразовать дробь в десятичную дробь (десятичное число), выполнить упрощение дроби.

Если дробь состоит только из целой части, то дробную часть можно оставить пустым. Если знаменатель дроби не вводить, то предполагается, что она равна 1. Если дробь не имеет целую часть, то целую часть можно оставить пустым.

Кнопка в верхем правом углу исходной дроби открывает меню (Рис.1) для преобразования исходной дроби ("Строка ввода" - преобразует дробь в виде числитель/знаменатель, "Дробь"- преобразует строку в дробь, и т.д.).

Дробь можно ввести в виде строки. Для этого нужно нажимать на кнопку и в открывающем меню (Рис 1.) выбрать "Строка ввода". В новом окне нужно набрать дробь в виде a/b, где a и b целые или десятичные числа (b>0). Примеры 45/5, 6.6/76.4, -7/6.7, и т.д.

Рис.1

Нажимая на вычисленных дробях открывается меню (Рис.2), что позволяет записать данную дробь в исходные дроби A и B, а также преобразовать на месте дроби в обыкновенную дробь, смешанную дробь или в десятичное число.

Рис.2

 

Функции кнопок
Кнопка Действие
A+B сумма дробей A и B
A-B разность дробей A и B
A×B произведение дробей A и B
A : B частное от деления A на B
A→B Запись содержания A в B
A←B Запись содержания B в A
A⇆B Замена местами значений A и В
Нажатием на данную радиокнопку выбираем дробь
Кнопка Действие
(·) степень Выбранный дробь возводит в степень
√(·) Вычисляет квадратный корень от выбранной дроби
Обыкновенная дробь Преобразует выбранную дробь к виду числитель/знаменатель
Упрощение дроби Пытается упростить выбранную дробь
Смешанная дробь Преобразует выбранный дробь в смешанное число
Десятичная дробь Преобразует выбранный дробь в десятичное число
Удаляет данный блок
Распечатка выражения на принтере

Вычисление суммы, разности, произведения и частного двух дробей онлайн

Онлайн калькулятором дробей можно вычислить сумму, разность, произведение и частное дробей.

Для вычисления суммы, разности, произведения и частного дробей:

  1. Введите элементы дробей A и В.
  2. Нажмите на кнопку "A+B ","A-B","A×B" или "A:B".

Вычисление степени дроби онлайн

Дробь можно возвести в целую или дробную степень. Если дробь отрицательный и степень также является дробью то степень дроби не определен.

Для вычисления степени дроби:

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Заполните значение степени (ячейку возле кнопки "A степень" ("B степень")).
  4. Нажмите на кнопку "A степень" ("B степень").

Вычисление квадратного корня от дроби онлайн

Заметим, что квадратный корень от числа (дроби) это то же, что и возведение числа (дроби) в степень 1/2. Если дробь отрицательный то квадратный корень дроби не определен.

Для вычисления квадратного корня от дроби:

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку √A или √B.

Преобразование дроби к обыкновенному виду онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку "Обыкновенная дробь".

Преобразование дроби в смешанное число онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку "Смешанное число".

Упрощение дроби онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Нажмите на кнопку "Упрощение дроби".

Преобразование дроби в десятичное число онлайн

  1. Выберите дробь A или B с помощью радиокнопки .
  2. Заполните дробь.
  3. Выберите число от 1 до 15 в пункте " Число знаков после десятичного разделителя"- для нужной точности вычислений.
  4. Нажмите на кнопку "Десятичная дробь".

 

matworld.ru

Калькулятор степеней онлайн | umath.ru

Калькулятор степеней поможет просто и быстро возвести число в степень онлайн. При этом показатель степени может быть как положительным, так и отрицательным!

Что такое степень числа?

Как возвести число в степень?

Чтобы понять, как возводить число в степень, рассмотрим несколько простых примеров.

Возведём в пятую степень число 2, то есть вычислим значение выражения 2^5. По определению, данному выше, 2^5 = 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot = 32.

Вычислим, чему равно 5^3, то есть чему равно число 5, возведённое в третью степень. 5^3 = 5\cdot 5\cdot 5\cdot = 125.

Отрицательный показатель степени

Показатели степени могут быть не только положительными, но и отрицательными.

    \[a^{-n} = \frac{1}{a^n}.\]

Например,

    \[2^{-3} = \frac{1}{2^3} = \frac{1}{8},\]

а

    \[5^{-2} = \frac{1}{5^2} = \frac{1}{25}.\]

Как пользоваться калькулятором степеней

Калькулятор помогает возводить число в степень онлайн. Основанием степени могут быть любые целые числа и десятичные дроби. Показатель степени тоже может быть любой десятичной дробью, однако следует помнить о том, что для отрицательных чисел не определена операция возведения в нецелую степень.

При записи дробных чисел можно использовать как точку, так и запятую. В ответе большие числа записываются в так называемом «научном формате», то есть число выглядит как <число>e<количество нулей>. Например, 1{,}4e{+}3=1400, а 1{,}4e{-}3=0{,}0014.

umath.ru

1/2 в минус 2 степени. Можно объяснение принципа нахождения, пожалуйста?

При минусовой степени мы переворачиваем дробь, и у нас получается 2/1 во второй степени, то есть 2 во второй степени, а это -- 4))) все просто))) ) если бы было 2 в минус второй степени, то получилось бы так: 1/2 и двойка во второй степени была бы, потом это получилось бы 1/4))) вот и все, надеюсь, понятно, я старался)))))

1/2 уходит в знаменатель с той же степенью, только без минуса, а в числителе пишется 1, получается 1÷(1/2)^2=1÷(1/4)=4

степень с минусом означает, что дробь нужно перевернуть. Вот было у тебя 1/2, а в минус 1 будет 2/1 ( или просто 2) . Если в такой степени стоит просто целое число, то представляем его в виде дроби и точно так же переворачиваем. Пример: 3 в минус первой, значит 3/1 в минус первой, значит 1/3. Если степень минус вторая, минус третья, минус четвертая и тд, То нужно возвести число или дробь в эту степень и потом перевернуть. Пример: 2/3 в минус 2степени. Возводим, 4/9 в минусовой степени, и переворачиваем, 9/4. Если это необходимо, выделяем целую часть. Удачи!

Надо начинать от печки, т.е. от натуральной степени. По определению натуральной степени: a^n = a*a*...a (n раз). Возведение в натуральную степень определяется как произведение одинаковых сомножителей. (Заметь, что при n=1 определение не работает, т.к. произведение не может состоять из одного сомножителя. То есть мы пока не знаем, что такое a^1). Далее вводится произведение двух степеней с одинаковым основанием: a^n * a^m = a^(n+m). Это очевидно. Затем -- частное двух степеней с одинаковым основанием: a^n / a^m = a^(n-m). Внимание! Здесь пока считаем, что n > m. Просто распишем числитель и знаменатель и сократим дробь. А если n=m? Тогда из предыдущего равенства получим: a^n / a^n = a^(n-n) = a^0 Но левая часть равна единице -- ведь числитель равен знаменателю. Поэтому мы должны принять, что для любого a a^0 = 1 (при a != 0). А если n&lt;m?&gt;0 имеем a^(-n) = 1 / a^n.

touch.otvet.mail.ru